APPENDIX C

SITE & SOIL ASSESSMENT FOR ON-SITE EFFLUENT DISPOSAL FOR LOT 2

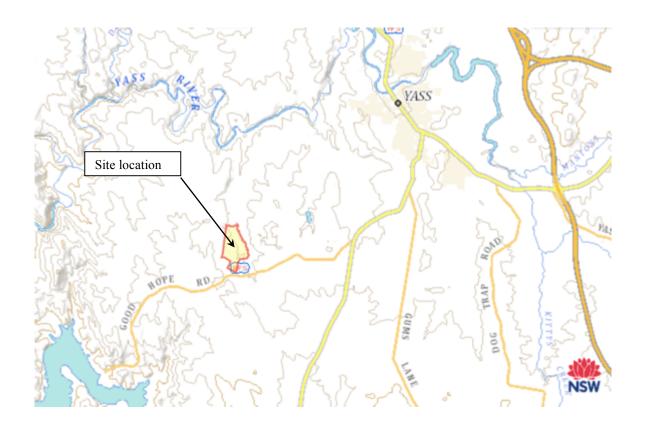
Site & Soil Assessment for On-site Effluent Disposal

Proposed Subdivision
Lot 2 in
Lot 4 DP1248916
14 Euralie Road
Good Hope NSW 2582

May 2024

Email: rgmiller@me.com

CONTENTS


Introduction	3
Site Characteristics	4
Site Evaluator	5
Site Assessment	6
Soil Assessment	7
System Selection	8
Management Prescriptions	9
Water Balance	11
Nutrient Balance	12
Appendix 1: Soil Survey Sheet	13
Appendix 2: NSW Accredited AWTS	14
Appendix 3: Important Reading	15

INTRODUCTION

Scope

This report provides site and soil assessment for on-site effluent disposal at the applicant's proposed new subdivision. The report focuses on the land in proximity to the proposed building envelope. Other areas within the proposed subdivision may also be suitable for on-site effluent disposal pending further investigation at building DA stage. A five-bedroom dwelling is assumed. An Aerated Wastewater Treatment System (AWTS) is proposed.

An AWTS coupled with surface or subsurface irrigation provides a suitable form of effluent treatment for the site and soil characteristics of the land in question. The management recommendations include the size and location of the proposed irrigation area.

References

AS/NZS 1547:2012 On-site domestic wastewater management On-site sewerage management for single households (Anon, 1998) Hird, C. (1991). Soil Landscapes of the Goulburn 1:250 000 Sheet

SITE CHARACTERISTICS

The terrain of the site comprises a gently inclined mid slope of 3-4 degrees overlying fossiliferous mudstone or siltstone. The slope across the proposed irrigation area has a linear planar configuration ensuring that runoff does not concentrate within the site. The soil at the site is a moderately well-drained Chromosol within the Binalong soil landscape. It comprises loam topsoil horizons to 25cm, overlying a clay loam then medium clay subsoil to 35cm and 100cm+ respectively.

SITE EVALUATOR

Company Land Capability Services

Name Richard Miller
ph: 0417 694 638
email: rgmiller@me.com
Date of assessment May 6, 2024

Signature of evaluator

SITE INFORMATION

Address Lot 2 in Lot 4 DP1248916, 14 Euralie Road,

Good Hope NSW 2582

all

Council area Yass Valley
Owner/developer Togias
Area: 8 ha

Site plan attached Yes Photograph attached Yes

Intended water supply Rainwater

Expected wastewater 720

quantity (litres/day) (Assumed 5 bedroom dwelling, potentially

housing 6 occupants generating design flows

of 120L/person/day = 720 litres/day)

Local experience Aerated wastewater treatment systems

provide adequate treatment of effluent on

appropriate soils.

SITE ASSESSMENT

Climate Warm to hot summers with a high evaporative deficit. Cool to

cold winters with a small evaporative deficit

Where appropriate:

Rainfall water balance calculated Yes
Land application area calculated Yes
Wet weather storage area calculation attached NA

Flood potential:

Land application area above 1 in 20 year flood level

Land application area above 1 in 100 year flood level

Yes
Electrical components above 1 in 100 year flood level

Yes

Exposure Well exposed with no shade

Slope Linear planar Landform Mid slope

Run-on See management prescriptions

Seepage None

Erosion Potential Low with adequate vegetation
Site Drainage Moderately well drained

Fill None in application area

Groundwater:

Horizontal distance to groundwater well

used for domestic water supply >250m

Groundwater vulnerability map referred to Yass LEP 2013

Sheet CL2_002

Vulnerability rating Not within

vulnerability area

Bores in the area and their purpose Stock & domestic

Buffer distance from wastewater management system to:

Perennial watercourses

Dams

>40m

Drainage lines

>40m

Boundary of property

>6m

Driveway

Swimming pools

Dwelling

NA

>40m

>6m

>6m

>15m

Is there sufficient land area for:

Application system (including buffer distances)

Reserve application system (including buffer distances)

Yes

Surface rocks

None

SOIL ASSESSMENT

Depth to bedrock or hardpan >100cm Depth to soil water table >100cm

Hydraulic loading rate

Soil structure Moderately structured topsoil

Moderately structured subsoil

Soil texture Loam topsoil

Clay loam to medium clay subsoil

Permeability category (3) 0.5-1.5m/day in topsoil

(6) <0.06m/day in subsoil

Hydraulic loading recommended

for irrigation system

1.8mm/day irrigation

Coarse Fragments 5% to 10mm in topsoil

None in subsoil

Bulk Density Estimate 1.5 in topsoil

Estimate 1.3 in subsoil

Ph (1:5 Water) Topsoil 5.4

Subsoil 5.8

Electrical conductivity (dS/m) Topsoil .06

Subsoil .04

Geology & soil landscape survey

Presence of discontinuities
Presence of fractured rock
Soil landscape reference

None None Binalong

Dispersiveness None in topsoil EAT 5(2)

Present in remoulded subsoil EAT 3(3)

SYSTEM SELECTION

Consideration of connection to a centralised sewerage system

Nearest feasible connection point

Potential for future connection to centralised sewerage

None

None

Type of land application system best suited to site:

Surface or subsurface irrigation

Reason Suits site and soil characteristics. Medium clay

subsoils preclude subsoil absorption of effluent in

trenches or beds

Type of treatment system best suited to site and application system:

Aerated wastewater treatment system

Reason Superior standard of treatment for site and soil

conditions.

GENERAL COMMENTS

Are there any specific environmental constraints?

None provided 40m setback to drainage lines is observed

Are there any specific health constraints?

None

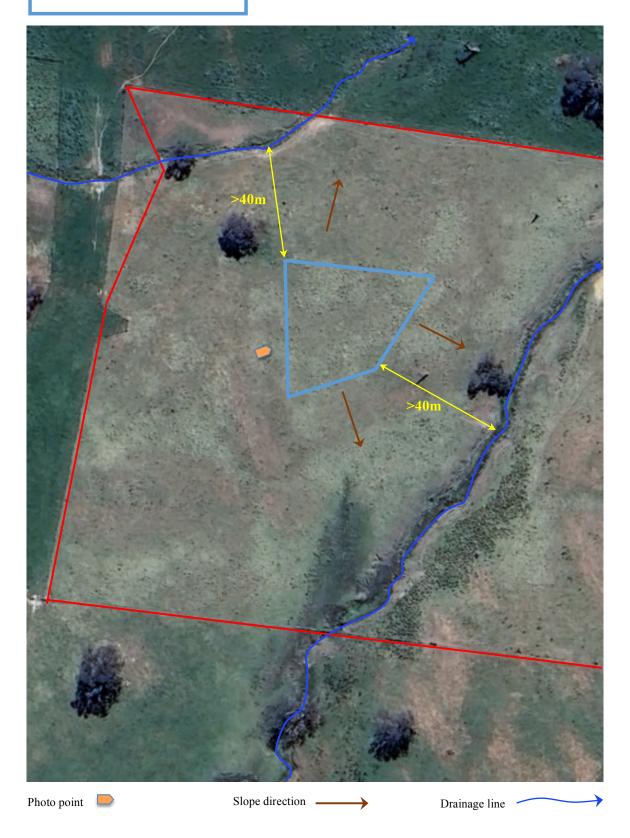
MANAGEMENT PRESCRIPTIONS

Aerated wastewater treatment systems treat effluent to an improved, or secondary standard, reducing any impact on groundwater and making available water for landscaping and other purposes. The following prescriptions are site specific and must be strictly adhered to, in order to maximise water and nutrient uptake, and thus minimise runoff and seepage.

The AWTS must be accredited by NSW Health.

An irrigation area of 400 m^2 should be determined within the area shown as suitable in Figure 1.

The treated effluent may be applied by surface irrigation. Surface sprays must be of the large droplet type that do not produce aerosols, and are to be regularly rotated throughout the area to evenly spread hydraulic and nutrient loads.


The treated effluent may also be applied by sub-surface irrigation. Auto flush return to the tank should be installed to ensure flocculants in the lines are recycled back to the tank. Pressure compensating dripper heads to be used. Vacuum breakers or air release valves to be installed at highest point in irrigation field, to prevent migration of soil into irrigation lines. Irrigation laterals to be installed on the contour at 100mm depth and at nominal 1000mm spacing. A single disc filter of nominal 100mm diameter (85mm internal) to be installed upstream of irrigation system. Filter to be cleaned at quarterly service intervals.

House area and rainwater tank runoff to be directed clear of the effluent application area.

The irrigation area must not be disturbed by any building activity such as stockpiles of excavated material or vehicle traffic. Livestock to be excluded from the site.

Detergents should be selected for low levels of phosphorus and sodium. (See appendix 3)

Fig 1. Area suitable for effluent application

WATER BALANCE

A water balance model is helpful in assessing the sensitivity of the design to various input and output characteristics.

Site Address:	Lot 2, 14 Euralie Road, Good Hope															
Date:				Assessor:												
NPUT DATA																
Design Wastewater Flow	Q	720	Liday	Based on I	maximum pot	ential occ	upancy an	d derived	from Tabl	e 4 in the	EPA Code	of Practi	ce (2013)			
Resign Irrigation Rate	DIR	4.0	mm/day	Based on I	soil texture cl	ass/perme	ability and	derived f	from Table	9 in the E	PA Code	of Practic	e (2013)			
lominated Land Application Area	L	400	m ²	1												
Prop Factor	С	0.6-0.8	unitiess	Estimates	evapotranspi	ration as a	fraction o	f pan eva	poration: v	varies with	season a	nd oron b	me ²			
Raiofall Runoff Factor	RF	1.0			of rainfall the							a a ap y				
fean Monthly Rainfall Data		inton Hostel) (0			on and number				,							
Mean Monthly Pan Evaporation Data		erra Airport (07			on and number											
Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Tota
Days in month	D		ditys	31	28	31	30	31	30	31	31	30	31	30	31	365
Rainfall	R		mm/month	50.3	45.5	46.7	49	49.9	57.9	59.6	59.3	56.8	64.5	56.6	55.8	651.
Evaporation	E		mm/month	260.4	207.2	176.7	111	68.2	48	52.7	80.6	114	161.2	198	248	172
Crop Factor	C		unitiess	0.8	0.8	0.7	0.7	0.6	0.6	0.6	0.6	0.7	0.8	0.8	0.8	
DUTPUTS																
Evapotranspiration	ET	ExC	mm/month	208.32	165.76	123.69	77.7	40.92	28.8	31.62	48.36	79.8	128.96	158.4	198.4	1290.7
Perosiation	8	DIRKO	mm/month	124.0	112	124.0	120.0	124.0	120.0	124.0	124.0	120.0	124.0	120.0	124.0	1460
Outputs		ET+B	mm/month	332.3	277.76	247.7	197.7	164.9	148.8	155.6	172.4	199.8	253.0	278.4	322.4	2750
NPUTS																
Retained Rainfall	RR	RxRF	mm/month	50.3	45.5	46.7	49	49.9	57.9	59.6	59.3	56.8	64.5	56.6	55.8	651.1
Applied Effluent	W	(QxD)/L	mm/month	55.8	50.4	55.8	54.0	55.8	54.0	55.8	55.8	54.0	55.8	54.0	55.8	657.
Inputs		RR+W	mm/month	106.1	95.9	102.6	103.0	106.7	111.9	115.4	115.1	110.8	120.3	110.6	111.6	1308
TORAGE CALCULATION																
Storage remaining from previous month			mm/month	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Storage for the month	8	(RR+W)-(ET+8)	mm/month	-226.2	-181.9	-145.2	44.7	-69.2	-36.9	40.2	-67.3	-89.0	-132.7	-167.8	-210.8	
Cumulative Storage	M		mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Maximum Storage for Nominated Area	N		mm	0												
	V	NxL.	L	0												
AND AREA REQUIRED FOR	ZERO S	TORAGE	m².	79.1433232	86.79927967	111.0503	145.2589	194.0532	237.6238	232.4516	197.4173	151,049	118.4336	97.38503	83.72093	

Based on a potential quantity of 720 litres/day of wastewater, spread across 400 m² of irrigation area, the effluent application rate of 1.8mm/day results in a moisture deficit in all months of the year. Importantly, the deficit is theoretical and it should be noted that saturation is possible at any time following periods of extended wet weather.

The application rate of 1.8mm/day is comparatively conservative, against the rate of 4mm/day for a loam determined from table M1 from AS1547:2012.

NUTRIENT BALANCE

The nutrient balance examines the discharge of nitrogen and phosphorus against the capacity of plants and soil to assimilate those nutrients. Excess nutrients may eventually impact upon watercourses via surface run-off or groundwater.

Nitrogen Balan	<u>ce</u>									
Site Address:	Lot 2,	14 Eura	alie Roa	d, God	d Hope)				
SUMMARY - LAND APPLIC	ATION AR	EA REQUI	RED BAS	ED NITR	OGEN BAI	LANCE			350.4	m ²
INPUT DATA ¹										
Wastewater Loading Nutrient Crop Uptake										
Hydraulic Load		720	L/day	Crop N Upt	ake	180	kp/ha/yr	which equals	49.3150685	mg/m²/day
Effluent N Concentration		30	mg/L							
% N Lost to Soil Processes (Geary & Gardner 1996)		0.2	Decimal							
Total N Loss to Soil		4320	mg/day							
Remaining N Load after soil loss		17280	mg/day							
NITROGEN BALANCE BAS	ED ON AN	NUAL CR	OP UPTAI	KE RATE	S					
Minimum Area required with zero buffer Determination of Buffer Zone Size for a Nominated Land								ation Area (LA	A)	
Nitrogen	350.4	m ²	Nominated L	Nominated LAA Size 400 m ²						
			Predicted N I	Export from I			-0.8928	kg/year		
			Minimum Bu	ffer Required	for excess nut	trient	0	m²		

720 litres/day wastewater quantity at 30mg/l total N concentration = 7.9 kg Nitrogen discharged per year, applied over an irrigation area of $400 \text{ m}^2 = 198 \text{ kg/ha/yr}$.

A mix of existing native and improved grasses should provide a rate of nitrogen uptake of around 180kg/ha/yr at this location.

Total nitrogen loss to soil processes should account for 39kg/ha/yr. Therefore the discharge of nitrogen should be balanced by plant uptake and soil processes.

Phosphorus Loading

720 litres/day wastewater quantity at 10 mg/l of P

- = 2.6 kg P discharged per year, applied over an irrigation area of 400m²
- = 65 kg/ha/vr.

Native & improved grasses should provide a rate of P uptake of around 20kg/ha/yr.

Balance of 45kg/ha/yr. applied to P sorption capacity of soil; P sorption capacity of in-situ soil 5340kg/ha. ¹

Lifetime of irrigation area 119 years in terms of P sorption capacity.

12

¹ SCA "Design and Installation of On-site Wastewater Systems", P. Sorption Uptake Values (Typical)

APPENDIX 1: SOIL SURVEY SHEET

			Br	B,	A.	7		Client:	Site Address:	
9			350-100,	250-350	70-250	0-70	Depth	loci4s	1.5.24 S: Lor 2	
			Space	Gerenac	Caroune		Boundary		4	
		8746	Mean	Con	long	Com	Texture		EURACIE ROOM (Som House	
			Moonna	Mooran	Mosenne	Moderane	Structure		on the	Soil Sur
			REGOISM REGOISM	Jewit Demok	Mosecute Secremen	Placepart Seconson Brown	Colour			Soil Survey Sheet
			,	1	1	1	Mottles			
		-	,		3/1010-	40	Coarse			
	1000		Strong	Dev	Moist WAAK	hen	Consistence	31	Land Capability Services	Icc
-	12		VERY	Moseura	Scient	Shaur	Plasticity	6.50	V Services	2

APPENDIX 2: NSW HEALTH ACCREDITED AWTS

AWTS Model	Company/Agent	Contact
Ultra Clear, ST8, ST10	Capital Waterworks	02 6258 1378
Taylex ABS 1500	Clearwater Sewage	0419 229 313
Fuji Clean CE1200, CRX1500,	Septics Filters & Pumps	0429 481 106
ECO PRO	The Tank People	02 6254 6949
Alpha Treat DP10	Alpha Treat Pty Ltd	0409 042 689
BioSeptic Performa, S-TEN NR	Bio-Septic Pty Ltd	1300 658 111
Aqua Advanced	Septics Filters & Pumps	0429 481 106
Garden Master Elite Advanced	Garden Master	02 4932 1011
Ozzi Kleen RP10	Suncoast Waste Water	1800 450 767
Super-Treat SE 10, SB 10	Super-Treat Systems	02 4422 3861
Taylex Poly ABS, ABS, DMS	Clearwater Sewage	0419 229 313
Turbojet Single Advanced	Icon-Septech	1300 557 143
Alpha Treat DP10	EcoWater Qld Pty Ltd	07 3205 3666
Earthsafe SS10	Earthsafe Australia Pty Ltd	1800 043 635
UBI Aqua	Global Tanks	07 4697 7099
Rivatec RWT10	Rivatec Environmental	1300 327 847

Appendix 3: Important Reading

Phone Office/Lab (02)

(02) 6775 1157 (02) 6775 1043

ABN: 72 212 385 096

email: rob@lanfaxlabs.com.au Website: http://www.lanfaxlabs.com.au

493 Old Inverell Road

(P.O. Box W90) Armidale NSW 2350 Director: Dr Robert Patterson FIEAust, CPSS, CPAg Soil Scientists and Environmental Engineers

Performance certified by Aust. Soil & Plant Analysis Council

LAUNDRY PRODUCTS RESEARCH

Laundry products were purchased by *Lanfax Labs* from supermarkets in Armidale, NSW and a number of boutique products were provided by manufacturers. A total of 41 liquids and 54 powders were tested by mixing each product at the manufacturer's recommended dose for either front loading or top loading automatic washing machines. The dose was calculated at the full cycle load, that is 75 L for front loaders and 150 L for top loaders. The full cycle accounts for the water used in the wash, spin, rinse, deep rinse and spin rinse cycle. The quantities of 75 L for front loaders and 150 L for top loaders were taken from averaged rates for those machines (Patterson, 2004).

Each sample was mixed with cold (20°C) deionised water (to replicate good quality rainwater). Where town water supplies are used, the values reported for sodium concentrations may increase because of sodium in the reticulated water – that will vary from location to location, usually higher in inland than coastal towns. Each sample was shaken for 30 minutes to replicate the washing action.

The concentrations of sodium and phosphorus (and other elements) were measured on the samples using Inductively Coupled Plasma (ICP) technology in accordance with current Good Laboratory Practices at Lanfax Labs.

Only sodium (g/wash) and phosphorus (mg/L) are reported in the graphs presented here.

Additional information on this unique research may be obtained at: www.lanfaxlabs.com.au/laundry.htm

Other papers on laundry detergents can be found at: www.lanfaxlabs.com.au/publications.html

HOW TO READ THE GRAPHS

Each product is represented by two bars: the top bar (if present) shows the phosphorus concentration (mg/L); while the lower bar shows the sodium load (g/wash). The graph is arranged in ranked order of sodium load. Figure F1 is for 54 detergents at the front loader rate, Figure T1 is for 89 detergents at the top loader rate.

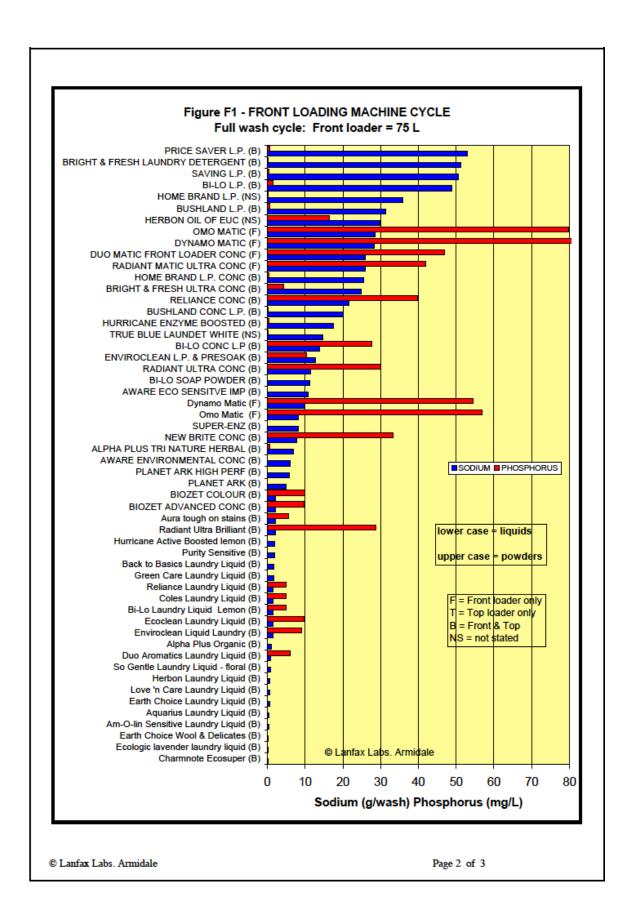
Sodium Load

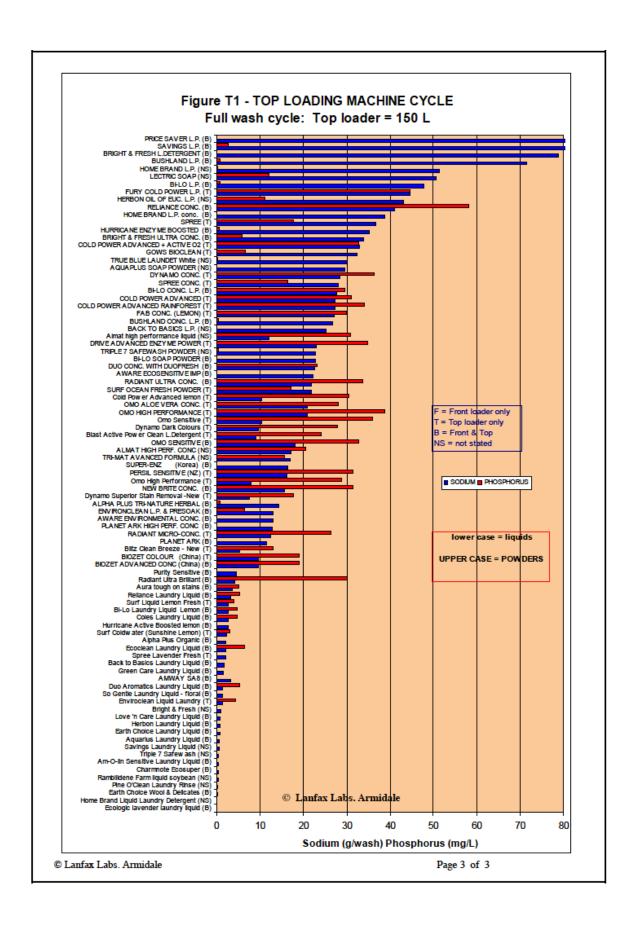
For all on-site systems that apply the effluent by surface or subsurface application, the levels of sodium in the discharge are critical to long term absorption. Choose the product with the lowest sodium load (g/wash). Levels above 20 g/wash are likely to be detrimental to plants and the soil although plant tolerance and soil types will vary. The shorter the bar, the lower the load. When in doubt, choose the lower sodium load.

The detergents with long sodium bars (greater than 20 g/wash) should not be thrown onto your favourite garden as the sodium may be detrimental to the plants. High pH (see the website for pH data) is also detrimental to plants and soil. The pH of liquids (average pH 8) is generally lower than pH of powder detergents (average pH 10.5).

Phosphorus Concentration

The choice of a suitable level of phosphorus in the greywater (laundry water discharge) will depend upon the soil type and the use of the effluent. In some soils, phosphorus is not a real concern because of the natural ability of the soil to immobilize the phosphorus and limit its leaching from the disposal site. In other soils, phosphorus is likely to build up to high levels and leach from the soil. It is preferable to choose the lower phosphorus values as well as the low sodium values. The load of phosphorus for each product is available in the website data.


©Copyright Restriction


This material may only be reproduced in full (three pages) for educational purposes. None of the graphs should be construed as an endorsement of one product over another, or that one product is superior or inferior to another. The data are presented as measurements of fact, ranked in order of sodium.

This research was funded by Lanfax Labs and was independent of any manufacturer or other organisation.

Caution: Formulations may have changes since these products were purchased in 2005.

Soil survey and analytical assessments, landscape analysis and plant nutrient relationships Independent research and commercial analytical laboratories. Environmental management consultants

NOTES